Reaction-advection-diffusion competition models under lethal boundary conditions
نویسندگان
چکیده
<p style='text-indent:20px;'>In this study, we consider a Lotka–Volterra reaction–diffusion–advection model for two competing species under homogeneous Dirichlet boundary conditions, describing hostile environment at the boundary. In particular, deal with case in which one diffuses constant rate, whereas other has rate diffusion directed movement toward better habitat heterogeneous lethal By analyzing linearized eigenvalue problems from system, conclude that dispersion advection direction is not always beneficial, and survival may be determined by convexity of environment. Further, obtain coexistence steady-states to system instability conditions semi-trivial solutions uniqueness steady states, implying global asymptotic stability positive steady-state.</p>
منابع مشابه
Educated bases for the HiMod reduction of advection-diffusion-reaction problems with general boundary conditions
Hierarchical Model (HiMod) reduction is a method introduced in [1] to effectively solve advection-diffusion-reaction (ADR) and fluid dynamics problems in pipes. The rationale of the method is to regard the solution as a mainstream axial dynamics added by transverse components. The mainstream component is approximated by finite elements as often done in classical 1D models (like the popular Eule...
متن کاملGeneralized Boundary Conditions for the Time-Fractional Advection Diffusion Equation
The different kinds of boundary conditions for standard and fractional diffusion and advection diffusion equations are analyzed. Near the interface between two phases there arises a transition region which state differs from the state of contacting media owing to the different material particle interaction conditions. Particular emphasis has been placed on the conditions of nonperfect diffusive...
متن کاملReaction-diffusion waves with nonlinear boundary conditions
A reaction-diffusion equation with nonlinear boundary condition is considered in a two-dimensional infinite strip. Existence of waves in the bistable case is proved by the Leray-Schauder method. 1. Formulation of the problem. Reaction-diffusion problems with nonlinear boundary conditions arise in various applications. In physiology, such problems describe in particular development of atheroscle...
متن کاملLattice Boltzmann Modeling of Advection-Diffusion-Reaction Equations: Pattern Formation Under Uniform Differential Advection
A lattice Boltzmann model for the study of advection-diffusion-reaction (ADR) problems is proposed. Via multiscale expansion analysis, we derive from the LB model the resulting macroscopic equations. It is shown that a linear equilibrium distribution is sufficient to produce ADR equations within error terms of the order of the Mach number squared. Furthermore, we study spatially varying structu...
متن کاملLattice models of advection-diffusion.
We present a synthesis of theoretical results concerning the probability distribution of the concentration of a passive tracer subject to both diffusion and to advection by a spatially smooth time-dependent flow. The freely decaying case is contrasted with the equilibrium case. A computationally efficient model of advection-diffusion on a lattice is introduced, and used to test and probe the li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B
سال: 2022
ISSN: ['1531-3492', '1553-524X']
DOI: https://doi.org/10.3934/dcdsb.2021250